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Abstract. The formalism for obtaining high-field expansions for the Potts model by means 
of partial generating functions is discussed. The method is applied to the square and honey- 
comb lattices for small q values of the q-state standard Potts model. The critical isotherm 
is investigated. 

1. Introduction 

The work in this paper is aimed at  formalizing and then extending the author’s previous 
work on high-field expansions for the Potts model (Enting 1974, to be referred to as I). 

The question that has aroused most interest in the Potts model is the order of the 
transition. Baxter (1973) has shown that for the square lattice the transition is continuous 
if q, the number of states, is less than or equal to four and is first order for greater than 
four states. In contrast, the mean-field approximation and the renormalization group 
work of Golner (1973) predict a first-order transition in the three-state model in two or 
three dimensions. A first-order transition for q equals three in three dimensions has been 
indicated by series analysis (Kim and Joseph 1974b, Ditzian and Oitmaa 1974). In 
contrast, a continuous transition is indicated by the series analysis work of Enting (1974), 
Ditzian (1974) and Straley (1974). In the present work we consider developing series in 
terms of partial generating functions expressed as codes. In three dimensions this tech- 
nique is applicable to the body-centred cubic (BCC), simple cubic (sc) and diamond 
lattices. At present the only series available are for q = 3 on sc, BCC and face-centred 
cubic (FCC) (five high-field polynomials are given in I) and terms up to order 24 in the 
temperature grouping given by Straley for general q on the sc lattice. The actual series 
calculated and analysed in the present work are for two dimensions and small q values. 
Effective utilization of low-temperature series on three-dimensional lattices must await 
further information on the location and character of the transitions. 

In $ 2 we discuss high-field expansions in terms of linkage rules of the type given by 
Sykes and Gaunt (1973a). Section 3 then shows how the method of partial generating 
functions (Sykes et a1 1965) is generalized to the q-state Potts model. A brief account of 
this work was given in I .  This technique enables us to interpret graphically the fact that 
the star-triangle transformation is valid only at  the transition (Stephen and Mittag 
1972). In $ 4  we investigate the critical isotherm for square and honeycomb lattices. 
Section 5 gives additional terms in the temperature grouping. The coded expressions 
for partial generating functions and the high-field polynomials for the three-state system 
on the honeycomb lattice are given in the appendix. 
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2. High-field expansions 

In this section we expand the outline of the method given in I. The most important 
concept is that of the 'linkage rule'. This concept was introduced by Sykes and Gaunt 
(1973a) to discuss high-field expansions for the general spin Ising model. 

The example given in equations ( 2 )  to (4) is for the three-state Potts model, but the 
other expressions refer to the q-state model in which the energy is zero if two interacting 
sites are in the same state and J otherwise. We consider only nearest-neighbour inter- 
actions. 

High-field expansions for the configurational free energy are perturbation expansions 
about a fully aligned state which will be the zero of energy according to the definition 
above. 

The expansion is 

In A = In exp( - B .Energy). 
all perturbations 

For the three-state (a, b, c) Potts model the energy is 

E = h,N,+h ,Nb+J(N, ,+Nbc+Nab) .  ( 2 )  
In I general values of the fields h , ,  h ,  were allowed, but the present work is confined to 
the case of h ,  = h, = h. 

If we are expanding about the c state, the graphical formulation of the expansion is 
simplified if we eliminate N,,, N , ,  from ( 2 )  using 

(3a)  z N ,  = 2Naa + Nab + N,,  

to give 

E = h(N,  + Nb) + J(ZN, + ZNb - 2N,, - 2Nbb - Nab) (4) 

z is the lattice coordination number. This is a linkage rule of the type described by Sykes 
and Gaunt (1973a). 

An investigation of the sum over all perturbations shows how the expansion can be 
represented as a problem in decorating strong graphs 

c exP(-PE) = c e c c exp(-BE). ( 5 )  
all perturbations n all topologically all embedding of all 2" arrangements 

distinct arrangements this topology ora. h sptns on the 
of n sites n sites 

In this context 'topologically distinct' is required to distinguish between different values 
of the E function summed over all arrangements of a, b spins. If one represents the 
arrangement ofthe n sites by a strong graph the C exp( - BE) will depend on the adjacency 
matrix of the graph but not on how it is embedded on the lattice. 

We may thus replace the first two summations in ( 5 )  by a sum over all graphs, and 
the third sum by including the strong lattice constant as a multiplicative factor. The last 
sum corresponds to summing over all ways of decorating the graph with a and b sites. 
On taking the logarithm we replace the lattice constant by the term in the lattice constant 
that is linear in the number of sites. 

The linkage rule (4) means that we have 

In A = 1 lmnunpm = p"L,(u) 
m 
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where 

U = exp(-/?J) 

p = exp( - Bh) 

and &,,(U) are polynomials of degree mz in U. All these arguments can be extended to 
linkage rules other than (4) and for general Ising spin have been discussed by Fox (1972) 
and Sykes and Gaunt (1973a). 

For the q-state Potts model the interaction energy is 

using 

a 

E = J 1 Nij  
i < j = l  

i = l  j =  1 

4 -  1 
z N i - N i i -  N i j  

i < j = l  

z N i - 2 N i i -  C N i j  
i = l  j = i + l  

4 

z N i  = Ni j+Ni i  
j =  1 

(7) 

to eliminate N i 4  from the first line. 

3. The method of partial generating functions 

In this section we show how the method of partial generating functions developed by 
Sykes et a1 (1965) can be generalized to the Potts model. The principles have been 
described by Sykes and Gaunt (1973a). 

We divide the lattice into two equivalent sublattices so that all the neighbour pairs 
lie one on each sublattice. We divide the L,,(u) defined by (6)  according to the number of 
perturbed sites on each sublattice so that E,,, is the sum of all perturbations with n spins 
on the A sublattice and m spins on the B sublattice. 

Then 

LAu) = C L , n  - m ( U ) ,  
m 

We will now show how to calculate F,(u, p)  defined by 
m 

FAu, = 1 pmU-'"L"u) 
m = O  

and since 

(9) 

a knowledge of Fo to F, will give L1 to L2,+ 

consequences. 

graphs on the B sublattice. 

There are several features of the calculation of the F,, that will prove to have important 

(i) The expansions for each F,, can be expressed as a sum over a finite number of 
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(ii) The graphs needed for the Potts model (or for any other multi-state system with 
more general nearest-neighbour interactions) are precisely the same graphs as for the 
q = 2 system, the spin * Ising model. This means that no additional graph counting is 
needed but that as in 0 2 we are concerned with a graph decoration problem. 

(iii) The decorated graphs give contributions to F, which can be described by a 
linkage rule analogous to those in 8 2. This property is also true for the spin 3 Ising model 
and it is possible to represent relations between two distinct systems by relating the 
linkage rule of L,(u) for one to the linkage rule of F,(u, 1 )  for the other. Examples of this 
type of relation can be found in Gaunt (1974) and in Sykes and Gaunt (1973b) where the 
relation between the two systems is the star-triangle transformation. The work below 
generalizes this relation to general q. 

In each of the F, we are considering n perturbed sites on the B sublattice and have to 
sum over all possible perturbations of sites on the A sublattice. For A sites neighbour to 
one or more B sites, the contributions to F, will depend on the configuration of the B 
sites according to the linkage rules described below. In any case the summation is over 
a finite number of possible perturbations and in principle presents no problems. 

There are however an infinite number of A sites that are not neighbour to perturbed 
B sites and which therefore have a contribution to F, given by an infinite sum. If the 
appropriate combinatorial factor for m perturbed A sites not neighbour to any of a 
particular configuration of n B sites is g,, then the sum over all perturbations of the 
disconnected A sites is 

1 gn[(q - l ) u z ~ I n .  
f l  

This is a function of (q - 1)u'p and so can be obtained from the 4 = 2 case by replacing 
uzp by (q - 1)u'p. This is because the g, is the term of order N o  in that lattice constant 
for n A sites not neighbour to the particular configuration of B sites (where N is the number 
of sublattice sites). Thus g, is independent of q and we have 

Fo = In[ 1 +(q - l)uzp] = In fi . (12) 

If we consider an A site neighbour to one perturbed B site then the sum over all possible 
perturbations of the A site is 

f2 = l+u'-2p+(q-2)uz-1p (13) 
where the terms correspond respectively to 

(i) the A site unperturbed, 
(ii) the A site perturbed into the same state as the B site, 
(iii) the A site perturbed into each of the (q - 2) other states. 
Each of the sums described by the fi for i 2 2 is finite and so of order NO. The 

contribution to F, is thus obtained by combining all the summations by multiplying 
the various 5 .  As described above, the infinite summation over disjoint A sites is 
obtained from the q = 2 case by generalizing u'p to (q - 1)u'p. Since for q = 2 the 
contributions of the infinite sum to the F, are in the form of negative powers off, , this 
will also be true for the general q-state model. 

The other factors are 

f 3  = i + u ~ - 4 ~ + ( ~ - 2 ) ~ ~ - 2 ~  (14) 

f4 = 1+2ui-3p+(q-3)uz-2p (15) 

for an A site adjacent to two B sites both perturbed into the same state. 
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for an A site adjacent to two B sites perturbed into different states. 

f 5 =  1 +  uz-6p  + (q - 2)u'-,p (16) 

fs = 1 + ~ 5  p + u z - 4  p + (q - 2)u'- 3p (17) 

for an A site with two B sites in one perturbed state and one in another perturbed state. 

f, = 1 +3uz-4p+(q-4)u'-3p (18) 

for an A site neighbour to three B sites in the same perturbed state. 

for an A site with three perturbed B neighbours in three different states. 

and have been given in I. For a lattice of coordination number z one has 
For the lattices with coordination number four or greater, additional f, are needed 

(19) 

The (q - 1) factor comes from summing over all possible states of the B site. 
The B sublattice of a square lattice is also a square lattice but it must be regarded as a 

square lattice with both first- and second-neighbour bonds. These bonds are different 
since two B sites connected by a nearest-neighbour bond will have two common A 
neighbours, while two B sites connected by a second-neighbour bond only have one 
common A neighbour. 

Fl = (4 - l ) ( f 2 / f I Y .  

The contributions to F ,  for the square lattice are : 
(i) from disconnected B sites 

(ii) from sites connected by a second-neighbour bond 

2(q- l)f;f3/f: (same B states) 

+%-  l)(q-2)f:f4/f: (different B states) 

(iii) sites connected by a nearest-neighbour bond 

2(q - 1 ) f k m - P  

+ 2(q - 1)(4 - 2)f" 
For the honeycomb lattice the B sublattice is triangular. The contributions to F2 are 

-3% - U2f;/f? 
+ 3(q - l)f:f3/f: 
+ 3(4 - l)(q - 2)f:f4/f: 

(disconnected B sites) 

(connected B sites in same state) 

(connected B sites in different states). 

The general term in the F,, is represented by the codes (A, a, j?, y, 6 . .  .) which represent 
f ;'ff; f { , f i  f", ..with 

(20) 
In the appendix we quote F3, F4 for the 4, 5, 6-state system on the square lattice, and 
F,, F4 and F, for the 3-state system on the honeycomb lattice. (The expressions for 
q = 3 on the square lattice were given in I.) 

For any particular set of perturbed B sites the contribution to the honeycomb F,, 
is for q = 3 

i = a+j?+y+G+.  . . . 

( f2/fi)Nac + "bc( f3/fl)N'a + Nbb(  f4/fl)N"( f 5 / f 1 ) N o a "  + Nbbb(  fs/f~)"~"~ + N a b b .  (2 1) 
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N,,, etc are the number of significant triangles of perturbed sites (see Sykes et a1 1965). 
The Nb,, etc are numbers of bonds excluding the edges of significant triangles. 

For the q-state Potts model on the honeycomb lattice we have from (6), (9), (10) for 
zero field 

where ZGn is the sum over all decorated strong graphs of n sites on a triangular lattice 
and gn is the term linear in N in the lattice constant 

a = 1 NIi 
i 

b = NIj 
i < j  

where NI,., NIi exclude bonds forming the edges of significant triangles. The summations 
cover i, j ,  k = 1 to 4 - 1. Equation (8) has been used to include thef, contributions with 
other terms rather than treat it separately as in (21). 

The types of vertices of a significant triangle completely specify the edges so that we 
have 

Nii = Nji + 3Niii + 
Nij = Njj+2Niij+2Nijj+ 1 Nijk. 

Niij 
j # i  

k.k # i 
k # j  

In terms of the NIj the linkage rule (7) becomes 

For the triangular lattice in zero field we have 

In A , r i  = C g n w 6 n w - 2 a ~ - 6 b ~ - 6 c ~ - 4 d ~ - 3 e .  
G" 

So that we have a star-triangle relation connecting (31) to (22) by 

In Atri(w) = lnA,,(u)-ln[l+(q- 1)u3] (32) 
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if we can satisfy (33) to (38). 

Ufllf2 = w2 . 
f 3 / f l f i  = 

f4/flfi = w - l  

fdflf: = w - 6  

fdflfi = w - 4  

f7/fif; = w - 3 ,  

f 3  = f2h 
fs = fib3 

f7 = f4b 

In actual fact for p = 1, z = 3 we have 

f6 = f2lu2 

so that only two of the equations (33) to (38) are independent. Writing them explicitly, 

(43) 
3u + (q - 3)uZ 

1+u+(q-2 )u2  = 

U + u2 + (q - 2)u3 
i+ (q- i )U3  

= w2. 

The solution is given by 

u - l  = 1+2hJq 

where h is a solution of 

(45) 

8h3-6h  = Jq. (46) 

The important property of this solution is that it also satisfies 

1 - w  
U =  

1 +(4--2)w’ (47) 

The duality transformation for the honeycomb triangular system gives, for any U < U, 

(48) 
where lnAtri is the high temperature form of the configurational free energy on the 
triangular lattice. Equation (47) is, however, precisely the relation connecting the high- 
temperature expansion variable to the low-temperature expansion variable, and so for 
U defined by (45) equations (32), (48) give 

(49) 

and so the temperature at  which the star-triangle transformation is valid is actually the 
transition temperature at which the high- and low-temperature expansions of the free 
energy are equal. 

If one assumes that there is a unique transition temperature then it must have U, 
given by (45). 

In AHc(u) = In A’Ju)+ In[l + (q  - 1)u3] 

In &(U) = In Atri(w) 
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The fact that the star-triangle transformation is valid only at the critical point was 
pointed out by Stephen and Mittag (1972), and the expressions (45), (46) have been 
previously given by Kim and Joseph (1974a). 

4. Investigation of the critical isotherm 

In this section we investigate the critical isotherm for the models whose code expansions 
are given in the appendix. The direct application of this analysis is in determining the 
critical exponent 6 for continuous transitions and the critical magnetization for first-order 
transitions. An additional interest in the critical isotherm lies in the possibility of using 
the appropriate series to determine the type oftransition. As indicated in the introduction, 
the order of the transition in three dimensions remains in doubt. Since the code method 
described in the previous section gives the full high-field polynomials, this may prove to 
be a particularly suitable method of investigating the behaviour in cases where high- 
temperature series have yielded a possible critical point. (The FCC lattice considered in 1 
is a special case since one has a large number of terms in the temperature grouping but 
only a few in the field grouping.) In two dimensions we can use the exact results of Baxter 
(1973) to assess the validity of using series along the critical isotherm to determine the 
order of the transition. For this reason we apply all the methods for estimating 6 and all 
the methods for estimating $, to each of the series calculated, regardless of the order of 
transition expected. 

To estimate 6 the method used in I was to follow Gaunt and Sykes (1972) and con- 
struct the series for - p(d/dp) In $ at U,. The reciprocals of the series coefficients should 
be estimates of 6 and are tabulated in table 1. 

Table 1. Estimates of S. The estimates are reciprocals of series coefficients of - q(d/dq) In $, 

(a )  Square lattice 

4\n 4 5 6 7 8 9 

3 15.87 16.24 15.59 15.86 15.54 15.56 
4 17.25 17.64 16.91 17.20 16.83 16.86 
5 18.96 19.45 18.68 19.05 18.68 19.05 
6 20.89 21.56 20.79 21.29 20.94 21.07 

(b)  Honeycomb lattice 

7 8 9 10 1 1  

3 16.59 16.01 16.00 16.34 15.92 15.71 

For the 4 = 3,4 = 4 state models on the square lattice the results seem to be con- 
sistent with 6 = 15. For 4 = 6 the value is much larger and slowly increasing. Since we 
have the exact result of Baxter (1973) that the transition is first-order for q = 5 and q = 6 
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we assume that the sequence of estimates for these cases must ultimately diverge but for 
q = 6, and even more for q = 5, this occurs very slowly and does not seem to be a reliable 
indication of the order of the transition. The use of this method to determine the order 
of the transition in three-dimensional systems would be even less reliable since there are 
no exact results for the critical temperature, and analysis of the critical isotherm would 
have to be based on an approximate series estimate. For the q = 3 model on the 
honeycomb lattice the estimates were again consistent with 6 = 15, but the estimates 
had irregular oscillation. (This is possibly of period four, but we do not have sufficient 
terms to confirm this.) 

Any method of analysis must make some assumptions about the behaviour of the 
function, ie the type of singularities expected. The most reasonable types of behaviour 
to postulate are : 

(i) - ( 1  --p)"' 
(ii) $ - (l-p)l" '+$c 

or (iii) no singularities at p = 1. 
We have analysed the series by using Pade approximants. Pade approximants to 

(1 -p)(d/dp)ln $evaluatedatp = 1 shouldgiveestimatesof6-'. Wefind the6estimates: 

6 = 15.2k0.5 q = 3  SQ 

6 = 15.8k0.8 q = 4  SQ 

6 = 18.5 k 1.0 q = 5  SQ 

6 = 21.1+1.0 y = 6  SQ 

6 = 15*5+0.7 4 = 3 HC. 

If we assume the form (ii) which corresponds to a first-order transition then we can 
estimate 6' by constructing (1 - p)(d/dp) ln(d$/dp) which evaluated at 1 gives estimates of 
I/&- 1 (or 1/6- 1 for the case (i) which is pc = 0). 

The estimates obtained were 

1 
6 

1 
6' 

1 
6' 

1 
6' 

1 - 7  = 1.00k0*06 q = 3  SQ 

1 -- = 1*05+0.10 4 = 4  SQ 

1-- = 1.oio.1 q = 5  SQ 

1 -- = 1.05k0.1 q = 6  SQ 

1 
6' 1 -- = 1.00f0.15 4 = 3 HC. 

Since these 6' estimates cover a range that includes both a cusp and a negative divergence 
in $ they do not reveal any useful information about the behaviour of the singularity. 

Because of the rapid variation in $ near p = 1 it is impossible to extrapolate $ 
directly to estimate The variation would however be slower if I) were raised to some 
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large power. We construct 9' and evaluate Pade approximants at p = 1. The estimates 
are 

i,b! = 0.0050 & 0.0005 q = 3  SQ 

9;' = 0.018)0*002 q = 4  SQ 

$E = 0,037 +0*010 q = 5  SQ 

= 0.063 + 0.010 4 = 6 SQ. 

Since for the 4 = 3, q = 4 cases these results are inconsistent with the Baxter result 
of a continuous transition, we are forced to conclude that Pade approximants have not 
been able to estimate i,bc and nor do  they indicate i,bc = 0, even in the cases for which we 
believe that we know 6. The overall conclusion must be that analysis of the critical 
isotherm is not a useful means of determining the order of the transition. The ma.jor 
difficulty is associated with the rapid variation corresponding to small values of 1/6. 
When investigating the spontaneous magnetization the small values of will give 
similar difficulties. 

5. The temperature grouping 

We briefly point out that it is very easy to add to the honeycomb lattice series the terms 

(q - 1)( 13;~' Op14 + 67;u"p' + u9p1 '). 

These terms together with the polynomials L ,  to  L ,  ,, obtained by expanding F ,  to F,, 
give the temperature grouping of the honeycomb lattice through to U,'. 

These terms are obtained by generalizing the corresponding spin f Ising model 
series by including the (q - 1) factor which is one for the spin Ising case. All these terms 
come from connected graphs and so the only 'decorations' that give the same order in U 

as the q = 2 case will be those decorations in which all perturbed sites are in the same 
state. Any decorations with several types of perturbed site will give terms of higher order 
in U. The u9p13 term has its graph formed of three hexagons with a common vertex (and 
three common edges). It can readily be seen that no decorations of this graph give terms 
of order U,', and so the additional terms given above do  complete the temperature 
grouping to order U,'. 

Similarly, it is possible to  extend the temperature grouping on the FCC and triangular 
lattices to more terms than were given in I, merely by considering a small number of the 
graphs for the spin 3 Ising model. 

The square lattice series have been extended and it has been possible to obtain the 
field dependence of the coefficients given by Kihara et a1 (1954). The 14th, 15th and 16th 
order low-temperature polynomials are for q = 3 

u14(4p12 + 16p" +60p1'+ 152p9 + 352p8+496p7 + 368p6 - 1212p5+ 604p4) 

u1'(24p''+ 160p' +640p8+ 1608~ '  +2148p6 -4344p5+ 944p4) 
U 16 ( 2 p 1 6  +12p'5+44p'4+136p13+334p'2+716p1'+1264p10+1982p9+1788p8 

+ 44p7 - m o p 6  + 2670~'  - 8 3 6 , ~ ~ ) .  

Lower-order polynomials are given by Straley and Fisher (1973). 
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Analysis of the extended series gives 

These do not differ greatly from the estimates obtained by Straley and Fisher. They 
believed that they had underestimated y' because their values violated the Rushbrooke 
inequality. In I we suggested that the result 6 = 15 implied that they had underestimated 
CO or /3. Since the series for t+h seem to be the most regular and the fl  estimate is unchanged 
by taking longer series, it would appear that a' has been underestimated. 

For other loose-packed lattices it is more appropriate to generalize the work of Sykes 
et al(1973). All the graphs for the general q-state code expansions are decorations of the 
q = 2 case and as explained above, the case in which all perturbed sites are in the same 
state will be the case that contributes the lowest power of U. For the y = 2 graphs 
Sykes et a1 have defined a number called the class of the code that gives the lowest power 
of U contributed by that code. To obtain all contributions to the temperature grouping 
up to some order, it is sufficient to consider all shadow lattice graphs that contribute at 
that order in the spin f Ising model (selecting them by the class of their codes) and then 
to consider all decorations of these graphs. 

There are two ways ofreducing the work involved since the procedure described above 
is sufficient but not all necessary. 

Firstly, as described by Sykes et a1 (1973), the work is reduced by ensuring that each 
contribution is obtained from the lowest F,, since most terms contributed to two 
distinct F,. 

Secondly, as remarked several times above, only the 'decorations' of the graphs that 
have all perturbed sites in the same state contribute at lowest order. I t  is therefore 
possible to exclude some decorated graphs from consideration. The most appropriate 
way of doing this is to generalize the concept of the class of a code to refer to decorated 
shadow lattice graphs. 

6 .  Conclusions 

The most immediate conclusions that can be drawn from this work concern the critical 
exponents. We can even attempt to estimate /3 for the three-state model on the honey- 
comb lattice. Pade approximants to (U, - u)(d/du) log IC/ give 

p = 0~10f0~01  4 = 3 HC. 

This is based on terms to u l 0  and a knowledge of U,. I t  should be noted that the Pade 
approximants to (dldu) log t+h do not give particularly regular estimates of U,. This is not 
surprising considering the shortness of the series, but it does mean that the result above 
should be treated with caution. Nevertheless, it is consistent with the estimate 
f i  = 0.105fOQ05 (3-state sa) obtained above, and is almost certainly less than p = 0.125 
for the y = 2 (spin f Ising) case. 

In contrast, it appears that in those cases where it is defined, ie if the transition is 
continuous, the exponent 6 does not depend on the number of states, nor on the lattice, 
and is 15 in two dimensions. 
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Extrapolations of the estimates give 

6 = 15.0k0.4 q = 3  SQ 

6 = 15.8k0.8 4 = 4  SQ 

6 = 15.0k1.5 4 = 3 HC. 

The 4 = 3 case is in agreement with the q = 2 (spin Ising) value, but the q = 4 value is 
slightly higher. Looking at all the q values in table 1, if one assumes that the q = 5, 
q = 6 estimates ultimately diverge then it is apparent that as q increases, more terms 
are needed before limiting behaviour becomes apparent. It seems plausible that the 
4 = 4 system does actually have 6 = 15 and that the apparent slight dependence on 4 
is spurious. 

While we believe that it is possible to estimate 6 if the transition is known to be 
continuous, it has not been possible to find estimates for the discontinuity in $, nor have 
any of the methods of series analysis indicated a reliable way of determining the order 
of the transition. The only possibility is to assume 6 is independent of q,  and to regard 
any case that has 6 estimates inconsistent with the q = 2 values as being first order. 
Results like the q = 4 case described here would have to be regarded as inconclusive in 
the absence of any other information about the type of transition. The only encouraging 
aspect is that as pointed out in 0 4, many of the difficulties are associated with the small 
values of 6-  (or of /? if the spontaneous order is considered). Both /?and 6-  are expected 
to increase with increasing dimensionality, and so the difficulties may be somewhat 
diminished, but any such analysis must be based on pre-existing estimates of the transi- 
tion temperature. 
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Appendix 

A.1. Code expansions for standard Potts model 

(General expansions for F,, F , ,  F ,  are given in the text. For the square lattice the three- 
state codes are given in I.) 

4 state, square lattice 

F3 = 24(8,4,0,4)+24(8,4,2,2)+6(8,4,4)+24(8,5,0,2,0,0,1)+24(8,5,0,2,0,1) 

+48(8, 5, 1, l,O, 1)+ 12(8, 5, 2,0, 1)-504(11, 10,0, 1)-252(11, 10, 1) 

+ 48(9,6, 1, 2) + 96(9,6,0, 3) + 48(9,6, 2, 1) + 24(9,6,3) + 72( 10, 8, 1, 1) 

-360(10,8,0, 2)- 198(10, 8,2)+873(12, 12) 
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F4 = 10260(14, 12,0, 2)-5400(14, 12, 1, 1)+6480(14, 12, 2)+432(12, 8, 3, 1) 

- 1314(12, 8,0,4)+888(12, 8, 1, 3)- 1512(12, 8,2, 2)-438(12, 8,4) 

-7056(13, 10,0, 3)-3096(13, 10, 1,2)-3420(13, 10,2, 1) 

- 1818( 13, 10, 3) + 96(11,6,4, 1) + 384(11,6,0, 5)+ 384(11,6,2, 3) 

+ 192(11, 6, 1,4)+ 192(11, 6, 3,2)+48(11,6, 5)+48(10,6,0,2,0,0, 2) 

+96(10, 6,0, 2,0, 1, 1)+ 144(10,6, 0, 2,0, 2)+96(10,6, 1, 1, 0, 1, 1) 

+48(10,6,2,0,0, 2)+96(10, 6, 1, 1,0, 2)+96(10,6, 1, 1, 1, 1) 

+24(10,6,2,0,2)- 1080(12,9,0,2,0,0, 1)-1080(12,9,0,2,0, 1) 

-2160(12,9, 1, 1,0, 1)-540(12,9,2,0, l)+48(10, 5,2,2,0,0, 1) 

+96(10, 5,0,4,0,0,  1)+96(10, 5,0,4,0,  l)+48(10, 5,2,2,0, 1) 

+96(10, $3, 1,0, 1)+ 192(10, 5, 1, 3,0, l)+48(10, 5,2, 2, 1) 

+24(10, 5,4,0, 1)+48(10,4,0, 6)+72(10,4,2,4)+36(10,4,4,2) 

+6(10,4, 6)+ 19548(15, 14,0, 1)+9774(15, 14, 1) 

+ 12(9,4,0,4,0,0,0,0,0,0, 1)+6(9,4,0,4,0,0,0,0,0, 1) 

+24(9,4, 1, 3,0,0,0,0,0,0, 1)+12(9,4,2,2,0,0,0,0,0, 1) 

+24(9,4, 2, 2,0,0,0,0, 1)+3(9,4,4,0,0,0,0, 1)+ 120(11,7, 1,2,0,0, 1) 

+240(11,7,0, 3,0,0, 1)+240(11, 7,0, 3,0, 1)+240(11, 7,2, 1,0, 1) 

+600(11, 7, 1, 2,0, 1)+ 120(11, 7, 2, 1, 1,)+60(11, 7, 3,0, 1) 

- 229432$16,16). 

5 state, square lattice 

F ,  = 72(8,4,0,4)+48(8,4,2,2)+8(8,4,4)+96(8, 5,0,2,0,0, l)+48(8, 5,0,2,0, 1) 

+96(8, 5, 1, 1,0, 1)+ 16(8, 5,2,0, 1)- 1344(11, 10,0, 1)-448(11, 10, 1) 

+96(9,6, 1,2)+288(9, 6,0, 3)+96(9, 6,2, 1)+32(9,6, 3)+ 144(10, 8, 1, 1) 

-936(10,8,0,2)-360(10,8,2)+20693(12, 12) 

F4 = 34080(14, 12,0,2)- 14400(14, 12, 1, 1)+ 16160(14, 12, 2)+864(12, 8, 3, 1) 

-4812(12,8,0,4)+2688(12,8, 1,3)-4056(12,8,2,2)-828(12,8,4) 

-28008(13, 10,0, 3)-8040(13, 10, 1, 2)-9336(13, 10,2, 1) 

-3256(13, 10, 3)+480(11,7, 1,2,0,0, 1)+ 144(11, 7,0, 3,0,0, 1) 

+720(11,7,0, 3,0, 1)+480(11,7,2, 1,0, 1)+ 1680(11, 7, 1,2,0, 1) 

+ 240(11,7,2, 1, 1)+80(11,7, 3,0, 1)+ 192(11, 6,4, 1)+ 1728(11,6,0, 5) 

+ 1152( 11, 6,2, 3) + 576( 11,6, 1,4) + 384( 11,6, 3, 2) + 64( 11, 6, 5) 

+384(10,6,0,2,0,0,2)+384(10, 6,0,2,0, 1, 1)+384(10,6,1, 1.0, 1, 1 )  
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+ 192(10,6, 1, 1,0,2)+96(10,6,2,0,0,2)+ 192(10,6, 1, 1, 1, 1) 

+32(10,6,2,0,2)+384(10,6,0,2,0,2)-5760(12,9,0,2,0,0, 1) 

-2880(12,9,0,2,0, 1)-5760(12,9, 1, 1,0, 1)-960(12,9,2,0, 1) 

+ 192(10, 5,2,2,0,0, 1)+576(10,5,0,4,0,0, 1)+288(10, 5,0,4,0, 1) 

+96(10, 5,2,2,0, 1)+ 192(10, 5, 3, 1,0, l)+576(10, 5, 1,3,0, 1) 

+96(10, 5,2,2, 1)+32(10, 5,4,0, 1)+216(10,4,0,6)+216(10,4,2,4) 

+ 72( 10,4,4,2) + 8( 10,4,6) + 695O4( 15, 14,0, 1) + 23 168( 15, 14, 1) 

+24(9,4,0,4,0,0,0,0,0,0,0, 1)+48(9,4,0,4,0,0,0,0,0,0, 1) 

+ 12(9,4,0,4,0,0,0,0,0, 1)+96(9,4, 1,3,0,0,0,0,0,0, 1) 

+24(9,4,2,2,0,0,0,0,0, 1)+48(9,4,2,2,0,0,0,0, 1) 

+4(9,4,4,0,0,0,0, 1)-72512(16, 16). 

6 state, square lattice 

F ,  = 160(X,4,0,4)+80(8,4,2,2)+10(8,4,4)+24~8,5,0,2,0,0,1)+80(8,5,0,2,0,1) 

+ 160(8, 5, 1, 1,0, 1)+20(8,5,2,0, 1)-2800(11, 10,0, 1)-700(11, 10, 1) 

+160(9,6, 1,2)+640(9,6,0,3)+40(9,6,3)+160(9,6,2, 1) 

+240(10,8, 1, 1)-1920(10,8,0,2)-570(10,8,2)+4O41~(12, 12) 

F4 = 85000(14, 12,0,2)-3oooO(14, 12, 1, 1)+32500(14, 12,2)+1440(12,8,3, 1) 

-12620(12,8,0,4)+6000(12,8,1,3)-8480(12,8,2,2)-1340(12,8,4) 

-77440(13, 10,0,3)- 16480(13, 10, 1,2)- 19720(13, 10,2, 1) 

-5110(13, 10, 3)+ 1200(11,7, 1,2,0,0,  1)+4800(11,7,0, 3,0,0, 1) 

+1600(11,7,0,3,0,1)+800(11,7,2,1,0,1)+3600(11,7,1,2,0,1) 

+400(11,7,2, 1, 1)+100(11, 7, 3,0, 1)+320(11,6,4, 1)+5120(11,6,0, 5 )  

+ 2560( 11,6,2, 3) + 1280(11,6, 1,4)+ 640(11,6, 3,2)+ 80( 11,6, 5) 

+ 1440(10,6,0,2,0,0,2)+960(10,6,0,2,0, 1, 1)+800(10,6,0,2,0,2) 

+960(10,6, 1, 1,0, 1, 1)+ 160(10,6,2,0,0,2)+320(10,6, 1, 1,0,2) 

+320(10,6, 1, 1, 1, 1)+40(10,6,2,0,2)- 1~000(12,9,0,2,0,0, 1) 

-6000(12,9,0,2,0, 1)- 12000(12,9, 1, 1,0, 1)- 1500(12,9,2,0, 1) 

+480(10,5,2,2,0,0, 1)+ 1920(10, 5,0,4,0,0, 1)+640(10, 5,0,4,0, 1) 

+ 160(10,5,2,2,0, 1)+320(10, 5, 3, 1,0, 1)+ 1280(10, 5, 1, 3,0, 1) 

+ 160(10,5, 2, 2, 1)+40(10,5,4,0, 1)+640(10,4,0,6) 

+480(10,4,2,4)+ 120(10,4,4,2)+ 10(10,4,6)+ 181000(15, 14,0, 1) 

+45250(15, 14, 1)+ 120(9,4,0,4,0,0,0,0,0,0,0, 1) 
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+120(9,4,0,4,0,0,0,0,0,0, 1)+20(9,4,0,4,0,0,0,0,0, 1) 

+ 240(9,4, 1,3,0,0,0,0,0,0, 1) + 40(9,4,2,2,0,0,0,0,0, 1) 

+80(9,4,2,2,0,0,0,1)+5(9,4,4,0,0,0,0,1)-177031~16,16). 

3 state, honeycomb 

F3 = 154$(9,9)- 120(8,7,0, 1)- 120(8,7, 1)+ 18(7, 5,'0,2)+36(7, 5 ,  1, 1)+ 18(7, 5,2) 

+6(7,6,0,0,0, 1)+2(7,0,0,0, 1)+6(6,3,1,2)+2(6,3,3) 

F4 = -2076(12, 12)+2304(11, 10,0, 1)+2304(11, 10, 1)-714(10,8,0,2) 

- 1428(10,8, 1, 1)-714(10,8,2)- 144(10,9,0,0,0, 1)-48(10,9,0,0, 1) 

+58(9,6,0,3)+30(9,6,1,2)+174(9,6,2,1)+10(9,6,3) 

+36(9, 7, LO, 0, 1)+36(9,7,0, 1,0, 1)+ 12(9,7,0, 1, 1)+ 12(9,7, 1,0, 1) 

+36(8,4,2,2)+36(8,4,1,3)+12(8,4,3,1)+12(8,4,4)+6(8,5,2,0,0,1) 

+6(8, 5,0,2,0, l)+24(8, 5, 1, LO, l)+6(8, 5,0,2, l)+6(8, 5, 2,0, 1) 

F,  = 31078315, 15)-44736(14, 13,0, 1)-44736(14, 13, 1)+21096(13, ll,O, 2) 

+ 42192( 13, 1 1, 1, 1) + 20196( 13, 1 1,2) - 3728( 12,9,0,3) - 1 1 184( 12,9,2, 1) 

-8160(12,9, 1,2)-2720(12,9, 3,0)+3024(13, 12,0,0,0, 1) 

+ lOO8(13, 12,0,0, 1)+ 198(11,7,0,4)-864(11,7, 1, 3)-468(11,7, 2, 2) 

+240(11,7,3,1)-354(11,7,4)-1656(12,10,0,1,0,1) 

- 1656(12, 10, 1,0,0, 1)-552(12, 10,0, 1, 1)-552(12, 10, 1,0, 1) 

+ 12(11, 8,2,0,0, 1)+ 12(11, 8,0,2,0, 1)- 312(11,8, 1, 1,0, 1) 

-108(11,8,0,2,1)+120(11,8,1,1,1)-108(11,8,2,0,1)+180(10,5,1,4) 

+360(10, $2, 3)+240(10, 5, 3, 2)+ 120(10, 5,4, l)+60(10, 5, 5) 

+54(10,6, 3,0,0, 1)+36(10,6,0,3,0, 1)+36(10,6,0,3, l)+54(10, 6, 1,2, 1) 

+234(10,6, 1,2,0, 1)+ 180(10,6,2, L O ,  1)+36(10,6,2, 1, 1) 

+42(10,6, 3,0, 1)+30(10, 7, 1,0,0,2)+24(10, 7,0, 1,0,2) 

+24(10,7,0, 1, 1, 1)+ 12(10,7, 4 0 ,  1, 1)+6(10,7, L O ,  2)+6(9,4,0,4, 1) 

+24(9,4,1,3,0,1)+12(9,4,2,2,1)+24(9,4,2,2,0,1)+24(9,4,3,1,0,1) 

+ 6(9,4,4,0, 1). 

A.2. High-Jield polynomials, honeycomb, q = 3 

L ,  = 2u3 

L2 = 3u4 + 3u5 -8u6 

L,  = 6u5 + 12u6 - 3 0 ~ '  - 36u8 + 505u9 
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L4 = 1 4 ~ ~ + 4 2 ~ ~ - 9 3 ~ ~ - 2 5 6 ~ ~ + 2 7 3 ~ ' ~ + 4 0 8 ~ ' '  - 3 9 2 ~ "  

L5 = 36u7+ 144u8-268u9- 1 3 0 8 ~ ' ~ + 8 8 8 ~ ' ' + 4 1 2 4 ~ ' ~ - 2 3 5 2 ~ ' ~ - 4 6 5 6 ~ ' ~  

+ 33983~'  

L6 = U 6  + 108U8 + 465U9 - 7 4 1 ~  l o  - 58 14U' ' + 1 5 5 4 ~ '  + 26961~'  - 3474ul4 

- 5 9 5 9 6 ~ ' ~  + 1 8 4 0 8 ~ ' ~  +53808d7 - 3 1 6 9 % ~ ' ~  

L ,  = 6u7 + 6u8 + 3 1 0 ~ ~  + 1554~"- 2298~"  -23470~" - 3 7 7 4 ~ ' ~  + 1 4 3 7 9 0 ~ ' ~  

+52228u15 - 4 6 1 5 4 4 ~ ' ~  - 8 9 1 6 0 ~ ' ~ + 8 1 3 8 4 0 ~ ' ~ -  1 1 3 0 8 8 ~ ' ~  

- 629 1 84u20 + 3 1 0 8 0 2 4 ~ ~  ' 
L8 = 27U8 + 54U9 + 8 6 4 ~ "  + 5 1 3 0 ~ '  - 7 1 8 0 ~ ' ~  - 9 2 3 4 6 ~ ' ~  - 4 7 9 9 4 ~ ' ~  + 672622~' 

+618675u'6-2778492u'7-2225882u'8+7O6716Ou'9+3116898u2o 

- 1 0 7 3 0 5 6 0 ~ ~ '  + 1 3 2 3 8 4 ~ ~ ~ + 7 4 3 1 1 6 8 ~ ' ~ - 3 1 6 2 5 6 0 ~ ~ ~  

L9 = 1 10u9 + 330u" + 2 3 8 8 ~ '  ' + 16244~" - 21960~ '  - 3 5 7 0 9 6 ~ ' ~  - 2 9 7 7 4 8 ~ ' ~  

+ 2950860~' + 4360866~' - 141 35 1 0 6 ~ '  - 22160256~ l9 

+45418368uZ0+ 56017240~'' -99859104~'' - 67275744~ '~  

+ 138023872~'~ + 1 2 7 2 9 2 1 6 ~ ~ ~  - 8 8 5 0 9 6 9 6 ~ ~ ~  + 33O97272$uz7 

Ll 0 = 3u8 + 459u" + 167 lu' ' + 6616~"  + 47463~ '  - 6 6 7 8 6 ~ ' ~  - 1349154~' 

- 1536897~' + 12483090~' + 2521 3 8 1 9 ~  '' - 6477754%' 

- 16144798Gu2O+ 233126871~'' + 567553404~" - 6 4 3 1 8 3 5 0 0 ~ ~ ~  

- 1 1 5 3 7 3 4 2 8 8 ~ ~ ~ +  1318810425&25 + 1 2 2 6 5 2 0 0 9 6 ~ ~ ~ -  1741158784~'~ 

- 324087552~'~ + 1061703168~'~ - 3541246973~~' 

Ll = 24u9 + 2 4 ~ "  + 1 7 3 4 ~ '  ' + 7 8 9 0 ~ ' ~  + 174OOu' + 1 2 2 9 7 0 ~ ' ~  - 216874~' 

- 4 9 3 5 3 8 4 ~ ' ~  - 7223736~" + 5 1300972~' 

- 2 7 7 2 1 7 5 0 2 ~ ~ ~  -995456552~" +990279138u2' $4389081426~'~ 

- 2 9 0 8 2 9 0 2 3 6 ~ ~ ~  - 12210957360~'~ + 7 7 4 8 8 7 2 0 3 2 ~ ~ ~  

+ 13 1439186~' 

+ 2 1 2 2 3 2 8 1 9 8 4 ~ ~ ~  - 16296715392~'~ - 2 0 4 5 4 5 5 3 7 2 8 ~ ~ ~  

+ 2159853824Ou3O+ 5977605120~~'  - 12812350464~~' 

+ 3 8 5 7 3 6 9 2 7 4 & ~ ~ ~ .  
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